Affiliation:
1. Department of Oral & Cranio‐Maxillofacial Surgery Shanghai Ninth People's Hospital College of Stomatology Shanghai Jiao Tong University School of Medicine National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology Shanghai 200011 P. R. China
Abstract
AbstractCompromised osteogenesis and angiogenesis is the character of stem cell senescence, which brought difficulties for bone defects repairing in senescent microenvironment. As the most abundant bone‐related miRNA, miRNA‐21‐5p plays a crucial role in inducing osteogenic and angiogenic differentiation. However, highly efficient miR‐21‐5p delivery still confronts challenges including poor cellular uptake and easy degradation. Herein, TDN‐miR‐21‐5p nanocomplex is constructed based on DNA tetrahedral (TDN) and has great potential in promoting osteogenesis and alleviating senescence of senescent bone marrow stem cells (O‐BMSCs), simultaneously enhancing angiogenic capacity of senescent endothelial progenitor cells (O‐EPCs). Of note, the activation of AKT and Erk signaling pathway may direct regulatory mechanism of TDN‐miR‐21‐5p mediated osteogenesis and senescence of O‐BMSCs. Also, TDN‐miR‐21‐5p can indirectly mediate osteogenesis and senescence of O‐BMSCs through pro‐angiogenic growth factors secreted from O‐EPCs. In addition, gelatin methacryloyl (GelMA) hydrogels are mixed with TDN and TDN‐miR‐21‐5p to fabricate delivery scaffolds. TDN‐miR‐21‐5p@GelMA scaffold exhibits greater bone repair with increased expression of osteogenic‐ and angiogenic‐related markers in senescent critical‐size cranial defects in vivo. Collectively, TDN‐miR‐21‐5p can alleviate senescence and induce osteogenesis and angiogenesis in senescent microenvironment, which provides a novel candidate strategy for senescent bone repair and widen clinical application of TDNs‐based gene therapy.
Funder
National Natural Science Foundation of China
School of Medicine, Shanghai Jiao Tong University