DNA Tetrahedron Delivering miR‐21‐5p Promotes Senescent Bone Defects Repair through Synergistic Regulation of Osteogenesis and Angiogenesis

Author:

Qi Lei1,Hong Shebin1,Zhao Tong1,Yan Jinge1,Ge Weiwen1,Wang Jing1,Fang Xin1,Jiang Weidong1,Shen Steve GF1,Zhang Lei1ORCID

Affiliation:

1. Department of Oral & Cranio‐Maxillofacial Surgery Shanghai Ninth People's Hospital College of Stomatology Shanghai Jiao Tong University School of Medicine National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology Shanghai 200011 P. R. China

Abstract

AbstractCompromised osteogenesis and angiogenesis is the character of stem cell senescence, which brought difficulties for bone defects repairing in senescent microenvironment. As the most abundant bone‐related miRNA, miRNA‐21‐5p plays a crucial role in inducing osteogenic and angiogenic differentiation. However, highly efficient miR‐21‐5p delivery still confronts challenges including poor cellular uptake and easy degradation. Herein, TDN‐miR‐21‐5p nanocomplex is constructed based on DNA tetrahedral (TDN) and has great potential in promoting osteogenesis and alleviating senescence of senescent bone marrow stem cells (O‐BMSCs), simultaneously enhancing angiogenic capacity of senescent endothelial progenitor cells (O‐EPCs). Of note, the activation of AKT and Erk signaling pathway may direct regulatory mechanism of TDN‐miR‐21‐5p mediated osteogenesis and senescence of O‐BMSCs. Also, TDN‐miR‐21‐5p can indirectly mediate osteogenesis and senescence of O‐BMSCs through pro‐angiogenic growth factors secreted from O‐EPCs. In addition, gelatin methacryloyl (GelMA) hydrogels are mixed with TDN and TDN‐miR‐21‐5p to fabricate delivery scaffolds. TDN‐miR‐21‐5p@GelMA scaffold exhibits greater bone repair with increased expression of osteogenic‐ and angiogenic‐related markers in senescent critical‐size cranial defects in vivo. Collectively, TDN‐miR‐21‐5p can alleviate senescence and induce osteogenesis and angiogenesis in senescent microenvironment, which provides a novel candidate strategy for senescent bone repair and widen clinical application of TDNs‐based gene therapy.

Funder

National Natural Science Foundation of China

School of Medicine, Shanghai Jiao Tong University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3