Enzyme‐Triggered Intestine‐Specific Targeting Adhesive Platform for Universal Oral Drug Delivery

Author:

Li Ying12ORCID,Lee Jung Seung34,Kirtane Ameya R.25,Li Mengyuan26,Coffey Charles William7,Hess Kaitlyn2,Lopes Aaron2,Collins Joy2,Tamang Siddartha2,Ishida Keiko2,Hayward Alison28,Wainer Jacob2,Wentworth Adam J.29,Traverso Giovanni259

Affiliation:

1. Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Haidian District Beijing 100193 P. R. China

2. David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA

3. Department of Intelligent Precision Healthcare Convergence Sungkyunkwan University Suwon 16419 South Korea

4. Department of Biomedical Engineering Sungkyunkwan University Suwon 16419 South Korea

5. Division of Gastroenterology Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA

6. Faculty of Applied Science & Engineering University of Toronto Toronto ON M5S1A4 Canada

7. Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

8. Division of Comparative Medicine Massachusetts Institute of Technology Cambridge MA 02139 USA

9. Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA

Abstract

AbstractPatient adherence to chronic therapies can be suboptimal, leading to poor therapeutic outcomes. Dosage forms that enable reduction in dosing frequency stand to improve patient adherence. Variation in gastrointestinal transit time, inter‐individual differences in gastrointestinal physiology and differences in physicochemical properties of drugs represent challenges to the development of such systems. To this end, a small intestine‐targeted drug delivery system is developed, where prolonged gastrointestinal retention and sustained release are achieved through tissue adhesion of drug pills mediated by an essential intestinal enzyme catalase. Here proof‐of‐concept pharmacokinetics is demonstrated in the swine model for two drugs, hydrophilic amoxicillin and hydrophobic levodopa. It is anticipated that this system can be applicable for many drugs with a diverse of physicochemical characteristics.

Funder

China Scholarship Council

Massachusetts Institute of Technology

Bill and Melinda Gates Foundation

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From biopolymer matrix to medicine: the drug delivery dynamics of amoxicillin-loaded PVA/SA/ZnONPs hydrogels;International Journal of Polymeric Materials and Polymeric Biomaterials;2024-06-02

2. Nature‐Inspired Wet Drug Delivery Platforms;Small Methods;2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3