A treeless absolutely random forest with closed‐form estimators of expected proximities

Author:

Laska Eugene12ORCID,Lin Ziqiang3ORCID,Siegel Carole12ORCID,Marmar Charles14ORCID

Affiliation:

1. Department of Psychiatry New York University Langone School of Medicine New York New York USA

2. Department of Population Health, Division of Biostatistics New York University Langone School of Medicine New York New York USA

3. Department of Preventive Medicine, School of Basic Medicine and Public Health Jinan University Guangzhou Guangdong China

4. Neuroscience Institute, New York University New York New York USA

Abstract

AbstractWe introduce a simple variant of a purely random forest, called an absolute random forest (ARF) used for clustering. At every node, splits of units are determined by a randomly chosen feature and a random threshold drawn from a uniform distribution whose support, the range of the selected feature in the root node, does not change. This enables closed‐form estimators of parameters, such as pairwise proximities, to be obtained without having to grow a forest. The probabilistic structure corresponding to an ARF is called a treeless absolute random forest (TARF). With high probability, the algorithm will split units whose feature vectors are far apart and keep together units whose feature vectors are similar. Thus, the underlying structure of the data drives the growth of the tree. The expected value of pairwise proximities is obtained for three pathway functions. One, a completely common pathway function, is an indicator of whether a pair of units follow the same path from the root to the leaf node. The properties of TARF‐based proximity estimators for clustering and classification are compared to other methods in eight real‐world datasets and in simulations. Results show substantial performance and computing efficiencies of particular value for large datasets.

Funder

National Institute on Alcohol Abuse and Alcoholism

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3