Intelligent language analysis method for multi‐sensor data fusion

Author:

Han Tengxiao1ORCID

Affiliation:

1. Huanghe University of Science and Technology Zhengzhou China

Abstract

AbstractLanguage intelligence analysis oriented to multi‐sensor data fusion is of great significance for language analysis in real scenarios. On the one hand, intelligent language analysis technology can greatly improve the performance of applications such as information retrieval and machine translation, and provide technical support for semantic‐level applications. On the other hand, each language has its own unique characteristics, and the advancement of the language system through language analysis technology is of great benefit to natural language analysis. In this letter, an intelligent language analysis method for multi‐sensor data fusion is elaborated. Specifically, the Kalman filter algorithm is combined to perform the first preprocessing filter fusion on multi‐sensor data. Then, the deep learning model is used to design a language analysis model using Bidirectional Long‐Short Memory Neural Networks (Bi‐LSTM) to obtain deep fusion of multi‐sensor data. In the experiment, the multi‐sensors are used to collect real language data and public language datasets for verification, and the results show the effectiveness of the method proposed in this letter in terms of syntactic label classification.

Publisher

Wiley

Subject

Artificial Intelligence,Computer Networks and Communications,Information Systems,Software

Reference19 articles.

1. Natural language processing[J];Chowdhary KR;Fundam Artif Intell,2020

2. Automatic Sign Language Analysis: A Survey and the Future beyond Lexical Meaning

3. An overview of shallow and deep natural language processing for ontology learning[J];Zouaq A;Ontol Learn Knowl Discov Web: Challenges Recent Adv,2011

4. Sentiment analysis

5. Automatic keyword extraction from individual documents[J];Rose S;Text Min: Appl Theory,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Advances on Semantic IoT Data Integration;Internet Technology Letters;2024-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3