Affiliation:
1. State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
Abstract
AbstractMetal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexible nickel‐backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 μW ⋅m−1 K−2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献