One‐Pot Synthesis of High‐Capacity Sulfur Cathodes via In‐Situ Polymerization of a Porous Imine‐Based Polymer

Author:

Li Guiping1ORCID,Liu Ye1,Schultz Thorsten23,Exner Moritz1,Muydinov Ruslan4,Wang Hui1,Scheurell Kerstin1,Huang Jieyang1,Szymoniak Paulina5,Pinna Nicola1,Koch Norbert23,Adelhelm Philipp16,Bojdys Michael J.1ORCID

Affiliation:

1. Department of Chemistry & IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany

2. Humboldt-Universität zu Berlin Institut für Physik, Institut für Chemie, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany

3. Helmholtz-Zentrum Berlin Hahn-Meitner-Platz 1 14109 Berlin Germany

4. Institute for Semiconductor- and High-Frequency-System Technologies Technische Universität Berlin Einsteinufer 25 10587 Berlin Germany

5. Bundesanstalt für Materialforschung und-prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany

6. Helmholtz-Zentrum Berlin Hahn-Meitner-Platz 1 14109 Berlin Germany

Abstract

AbstractLithium‐ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur‐based cathodes, offering a high theoretical capacity of 1675 mAh g−1 and environmental advantages due to sulfur's abundance and lower toxicity, present a more sustainable alternative. However, state‐of‐the‐art sulfur‐based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries. Consequently, sulfur‘s mobility leads to battery degradation—an effect known as the “sulfur‐shuttle”. This study introduces a solution by developing a microporous, covalently‐bonded, imine‐based polymer network grown in situ around sulfur particles on the current collector. The polymer network (i) enables selective transport of electrolyte and Li‐ions through pores of defined size, and (ii) acts as a robust host to retain the active component of the electrode (sulfur species). The resulting cathode has superior rate performance from 0.1 C (1360 mAh g−1) to 3 C (807 mAh g−1). Demonstrating a high‐performance, sustainable sulfur cathode produced via a simple one‐pot process, our research underlines the potential of microporous polymers in addressing sulfur diffusion issues, paving the way for sulfur electrodes as viable alternatives to traditional metal‐based cathodes.

Funder

European Research Council

China Scholarship Council

Bundesministerium für Bildung und Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3