Single‐Atom Iron Catalyst as an Advanced Redox Mediator for Anodic Oxidation of Organic Electrosynthesis

Author:

Wang Xin‐Yu123,Pan Yong‐Zhou12,Yang Jiarui3,Li Wen‐Hao1,Gan Tao4,Pan Ying‐Ming2,Tang Hai‐Tao2,Wang Dingsheng3ORCID

Affiliation:

1. Department of Chemistry Northeastern University Shenyang 110004 China

2. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 China

3. Department of Chemistry Tsinghua University Beijing 100084 China

4. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

Abstract

AbstractHomogeneous electrocatalysts can indirect oxidate the high overpotential substrates through single‐electron transfer on the electrode surface, enabling efficient operation of organic electrosynthesis catalytic cycles. However, the problems of this chemistry still exist such as high dosage, difficult recovery, and low catalytic efficiency. Single‐atom catalysts (SACs) exhibit high atom utilization and excellent catalytic activity, hold great promise in addressing the limitations of homogeneous catalysts. In view of this, we have employed Fe‐SA@NC as an advanced redox mediator to try to change this situation. Fe‐SA@NC was synthesized using an encapsulation‐pyrolysis method, and it demonstrated remarkable performance as a redox mediator in a range of reported organic electrosynthesis reactions, and enabling the construction of various C−C/C−X bonds. Moreover, Fe‐SA@NC demonstrated a great potential in exploring new synthetic method for organic electrosynthesis. We employed it to develop a new electro‐oxidative ring‐opening transformation of cyclopropyl amides. In this new reaction system, Fe‐SA@NC showed good tolerance to drug molecules with complex structures, as well as enabling flow electrochemical syntheses and gram‐scale transformations. This work highlights the great potential of SACs in organic electrosynthesis, thereby opening a new avenue in synthetic chemistry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3