Affiliation:
1. Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku 615-8510 Kyoto Japan
2. WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi 920-1192 Kanazawa Ishikawa Japan
3. Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi 920-1192 Kanazawa Ishikawa Japan
Abstract
AbstractPillar[n]arenes can be constructed using a Friedel–Crafts alkylation process. However, due to the reversible nature of the alkylation, mixture of large pillar[n]arenes (n≥7) are obtained as minor products, and thus laborious purification are necessary to isolate the larger pillar[n]arenes. Moreover, inert methylene bridges are introduced during the alkylation process, and the multi‐functionalization of the bridges has never been investigated. Herein, an irreversible Friedel–Crafts acylation is used to prepare pillar[n]arenes. Due to the irreversible nature of the acylation, the reaction of precursors bearing carboxylic acids and electron‐rich arene rings results in a size‐exclusive formation of pillar[n]arenes, in which the ring‐size is determined by the precursor length. Because of this size‐selective formation, laborious separation of undesired macrocycles is not necessary. Moreover, the bridges of pillar[n]arenes are selectively installed with reactive carbonyl groups using the acylation method, whose positions are determined by the precursor used. The carbonyl bridges can be easily converted into versatile functional groups, leading to various laterally modified pillar[n]arenes, which cannot be accessed by the alkylation strategy.
Funder
Japan Society for the Promotion of Science
Core Research for Evolutional Science and Technology
Subject
General Chemistry,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献