Manganese‐Catalyzed Redox‐Neutral Thiolation of Alkyl Halides with Thioformates

Author:

Pei Pan1,Zhao Min1,Lin Dengkai1,Dong Zhan1,Song Liangliang2ORCID,Chen Liang‐An1

Affiliation:

1. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University 210023 Nanjing China

2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China

Abstract

AbstractTransition metal‐catalyzed C−S cross‐coupling has emerged as an important strategy to furnish thioethers; however, the dominant utilization of noble metal catalysts as well as the construction of challenging C(sp3)−S bonds by transition metal‐catalysis remain highly problematic. Earth‐abundant manganese has gathered increasing interest as an attractive catalyst for new reaction development; nevertheless, C(sp3)−S cross‐coupling reaction by manganese catalysis has not been reported. Herein, we disclose a highly efficient manganese‐catalyzed redox‐neutral thiolation of a broad range of alkyl halides with thioformates as practical sulfuration agents. Strategically, employing easily synthesized thioformates as thiyl radical precursors allows access to various aryl and alkyl thioethers in good to excellent yields. Notably, this redox‐neutral method avoids the utilization of strong bases, external ligands, forcing reaction conditions, and stoichiometric manganese, thus presenting apparent advantages, such as broad substrate scope, excellent functional group compatibility, and mild reaction conditions. Finally, the utilities of this method are also illustrated by downstream transformations and late‐stage thiolation of structurally complex natural products and pharmaceuticals.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3