Affiliation:
1. Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
2. School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
Abstract
AbstractChirality‐driven self‐sorting plays an essential role in controlling the biofunction of biosystems, such as the chiral double‐helix structure of DNA from self‐recognition by hydrogen bonding. However, achieving precise control over the chiral self‐sorted structures and their functional properties for the bioinspired supramolecular systems still remains a challenge, not to mention realizing dynamically reversible regulation. Herein, we report an unprecedented saucer[4]arene‐based charge transfer (CT) cocrystal system with dynamically reversible chiral self‐sorting synergistically induced by chiral triangular macrocycle and organic vapors. It displays efficient chain length‐selective vapochromism toward alkyl ketones due to precise modulation of optical properties by vapor‐induced diverse structural transformations. Experimental and theoretical studies reveal that the unique vapochromic behavior is mainly attributed to the formation of homo‐ or heterochiral self‐sorted assemblies with different alkyl ketone guests, which differ dramatically in solid‐state superstructures and CT interactions, thus influencing their optical properties. This work highlights the essential role of chiral self‐sorting in controlling the functional properties of synthetic supramolecular systems, and the rarely seen controllable chiral self‐sorting at the solid‐vapor interface deepens the understanding of efficient vapochromic sensors.
Funder
National Natural Science Foundation of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献