Symmetry‐Broken Ru Nanoparticles with Parasitic Ru‐Co Dual‐Single Atoms Overcome the Volmer Step of Alkaline Hydrogen Oxidation

Author:

Mu Xueqin Q.12,Liu Suli L.1ORCID,Zhang Mengyang Y.1,Zhuang Zechao C.3,Chen Ding2,Liao Yuru R.1,Zhao Hongyu Y.2,Mu Shichun C.2,Wang Dingsheng S.3ORCID,Dai Zhihui H.1

Affiliation:

1. School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. China

2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China

3. Engineering Research Center of Advanced Rare Earth Materials Department of Chemistry Tsinghua University Beijing 100084 P. R. China

Abstract

AbstractEfficient dual‐single‐atom catalysts are crucial for enhancing atomic efficiency and promoting the commercialization of fuel cells, but addressing the sluggish kinetics of hydrogen oxidation reaction (HOR) in alkaline media and the facile dual‐single‐atom site generation remains formidable challenges. Here, we break the local symmetry of ultra‐small ruthenium (Ru) nanoparticles by embedding cobalt (Co) single atoms, which results in the release of Ru single atoms from Ru nanoparticles on reduced graphene oxide (Co1Ru1,n/rGO). In situ operando spectroscopy and theoretical calculations reveal that the oxygen‐affine Co atom disrupts the symmetry of ultra‐small Ru nanoparticles, resulting in parasitic Ru and Co dual‐single‐atom within Ru nanoparticles. The interaction between Ru single atoms and nanoparticles forms effective active centers. The parasitism of Co atoms modulates the adsorption of OH intermediates on Ru active sites, accelerating HOR kinetics through faster formation of *H2O. As anticipated, Co1Ru1,n/rGO exhibits ultrahigh mass activity (7.68 A mgRu−1) at 50 mV and exchange current density (0.68 mA cm−2), which are 6 and 7 times higher than those of Ru/rGO, respectively. Notably, it also displays exceptional durability surpassing that of commercial Pt catalysts. This investigation provides valuable insights into hybrid multi‐single‐atom and metal nanoparticle catalysis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3