Affiliation:
1. Department of Chemistry and Molecular Engineering & Science Institute University of Washington 36 Bagley Hall Seattle WA 98195 USA
2. School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325 USA
Abstract
AbstractThe synthesis and processing of π‐rich polymers found in novel electronics and textiles is difficult because chain stiffness leads to low solubility and high thermal transitions. The incorporation of “shape‐shifting” molecular cages into π‐rich backbone provides an ensemble of structural kinks to modulate chain architecture via a self‐contained library of valence isomers. In this work, we report the synthesis and characterization of (bullvalene‐co‐phenylene)s that feature smaller persistence lengths than a prototypical rigid rod polymer, poly(p‐phenylene). By varying the amount of bullvalene incorporation within a poly(p‐phenylene) chain (0–50 %), we can tune thermal properties and solution‐state conformation. These features are caused by stochastic bullvalene isomers within the polymer backbone that result in kinked architectures. Synthetically, bullvalene incorporation offers a facile method to decrease structural rigidity within π‐rich materials without concomitant crystallization. VT NMR experiments confirm that these materials remain dynamic in solution, offering the opportunity for future stimuli‐responsive applications.
Funder
American Chemical Society Petroleum Research Fund
National Science Foundation
Subject
General Chemistry,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献