Strong Acid Enabled Comprehensive Training of Poly (Sodium Acrylate) Hydrogel Networks

Author:

Yang Baibin1,Wang Caihong1,Yu Qiannan2,Ma Peipei1,Zhao Qiang1,Wu Yong1,Ma Kui1,Tan Shuai1ORCID

Affiliation:

1. School of Chemical Engineering Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 China

2. College of Energy and Power Engineering Guangdong University of Petrochemical Technology No.139, 2nd Guandu Road Maoming 525000 China

Abstract

AbstractThe design of admirable hydrogel networks is of both practical and fundamental importance for diverse applications of hydrogels. Herein a general strategy of acid‐assisted training is designed to enable multiple improvements of conventional poly (sodium acrylate) networks for hydrogels. Hydrophobic homogeneous crosslinked poly (sodium acrylate) hydrogels are prepared to verify the strategy. The multiple improvements of poly (sodium acrylate) networks are simply achieved by immersing the hydrogel networks into 4 M H2SO4 solutions. The introduced acids would induce transformation of poly (sodium acrylate) into poly (acrylic acid) at hydrogel surface, which constructs dynamic hydrogen bonding interactions to tighten the network. The acid‐containing poly (sodium acrylate) hydrogels newly generate anti‐swelling and self‐healing performance, and show mechanical improvement. The internal poly (sodium acrylate) of the pristine acid‐containing hydrogels is further fully transformed via acid‐infiltration after following cyclic stretch/release training to significantly improve the mechanical performance. The Young's modulus, stress, and toughness of the fully‐trained hydrogels are 187.6 times, 35.6 times, and 5.4 times enhanced, respectively. The polymeric networks retain isotropic in fully‐trained hydrogels to ensure superior stretchability of 8.6. The acid‐assisted training performance of the hydrogels can be reversibly recovered by NaOH neutralization. The acid‐assisted training strategy here is general for poly (sodium acrylate) hydrogels.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3