The Fundamental Disorder Unit in (Si, P)−(O, N) Networks

Author:

Dialer Marwin1ORCID,Witthaut Kristian1ORCID,Bräuniger Thomas1ORCID,Schmidt Peter J.2ORCID,Schnick Wolfgang1ORCID

Affiliation:

1. Department of Chemistry University of Munich (LMU) Butenandtstraße 5–13 81377 Munich Germany

2. Lumileds Phosphor Center Aachen (LPCA) Lumileds (Germany) GmbH Philipsstraße 8 52068 Aachen Germany

Abstract

AbstractThis study presents the synthesis and characterization of oxonitridosilicate phosphates Sr3SiP3O2N7, Sr5Si2P4ON12, and Sr16Si9P9O7N33 as the first of their kind. These compounds were synthesized under high‐temperature (1400 °C) and high‐pressure (3 GPa) conditions. A unique structural feature is their common fundamental building unit, a vierer single chain of (Si, P)(O, N)4 tetrahedra. All tetrahedra comprise substitutional disorder which is why we refer to it as the fundamental disorder unit (FDU). We classified four different FDU motifs, revealing systematic bonding patterns. Including literature known Sr5Si2P6N16, three of the four patterns were found in the presented compounds. Common techniques like single‐crystal X‐ray diffraction (SCXRD), elemental analyses, and 31P nuclear magnetic resonance (NMR) spectroscopy were utilized for structural analysis. Additionally, low‐cost crystallographic calculations (LCC) provided insights into the structure of Sr16Si9P9O7N33 where NMR data were unavailable due to the lack of bulk samples. The optical properties of these compounds, when doped with Eu2+, were investigated using photoluminescence excitation (PLE), photoluminescence (PL) measurements, and density functional theory (DFT) calculations. Factors influencing the emission properties, including thermal quenching mechanisms, were discussed. This research reveals the new class of oxonitridosilicate phosphates with unique systematic structural features that offer potential for theoretical studies of luminescence and band gap tuning in insulators.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3