Concentrated Formic Acid from CO2 Electrolysis for Directly Driving Fuel Cell

Author:

Zhang Chao12,Hao Xiaobin1,Wang Jiatang3,Ding Xiayu1,Zhong Yuan1,Jiang Yawen1,Wu Ming‐Chung4,Long Ran1,Gong Wanbing1,Liang Changhao5,Cai Weiwei3,Low Jingxiang1,Xiong Yujie126ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science and National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230026 China

2. Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou Jiangsu 215123 China

3. Sustainable Energy Laboratory Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan Hubei 430074 China

4. Department of Chemical and Materials Engineering Chang Gung University Taoyuan 33302 Taiwan

5. Key Laboratory of Materials Physics Institute of Solid State Physics, HFIPS Chinese Academy of Sciences Hefei Anhui 230031 China

6. Anhui Engineering Research Center of Carbon Neutrality The Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecular-Based Materials College of Chemistry and Materials Science Anhui Normal University, Wuhu Anhui 241002 China

Abstract

AbstractThe production of formic acid via electrochemical CO2 reduction may serve as a key link for the carbon cycle in the formic acid economy, yet its practical feasibility is largely limited by the quantity and concentration of the product. Here we demonstrate continuous electrochemical CO2 reduction for formic acid production at 2 M at an industrial‐level current densities (i.e., 200 mA cm−2) for 300 h on membrane electrode assembly using scalable lattice‐distorted bismuth catalysts. The optimized catalysts also enable a Faradaic efficiency for formate of 94.2 % and a highest partial formate current density of 1.16 A cm−2, reaching a production rate of 21.7 mmol cm−2 h−1. To assess the practicality of this system, we perform a comprehensive techno‐economic analysis and life cycle assessment, showing that our approach can potentially substitute conventional methyl formate hydrolysis for industrial formic acid production. Furthermore, the resultant formic acid serves as direct fuel for air‐breathing formic acid fuel cells, boasting a power density of 55 mW cm−2 and an exceptional thermal efficiency of 20.1 %.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3