Machine Learning Algorithm Guides Catalyst Choices for Magnesium‐Catalyzed Asymmetric Reactions

Author:

Baczewska Paulina1,Kulczykowski Michał1,Zambroń Bartosz1,Jaszczewska‐Adamczak Joanna1,Pakulski Zbigniew1,Roszak Rafał1,Grzybowski Bartosz A.12ORCID,Mlynarski Jacek1

Affiliation:

1. Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 02-224 Warsaw Poland

2. Center for Algorithmic and Robotized Synthesis (CARS) of Korea's Institute for Basic Science (IBS) and Department of Chemistry Ulsan National Institute of Science and Technology 50 UNIST-gil Eonyang-eup Ulju-gun Ulsan 44919 South Korea

Abstract

AbstractOrganic‐chemical literature encompasses large numbers of catalysts and reactions they can effect. Many of these examples are published merely to document the catalysts’ scope but do not necessarily guarantee that a given catalyst is “optimal”—in terms of yield or enantiomeric excess—for a particular reaction. This paper describes a Machine Learning model that aims to improve such catalyst‐reaction assignments based on the carefully curated literature data. As we show here for the case of asymmetric magnesium catalysis, this model achieves relatively high accuracy and offers out of‐the‐box predictions successfully validated by experiment, e.g., in synthetically demanding asymmetric reductions or Michael additions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3