Quantum Dot‐Based FRET Nanosensors for Talin‐Membrane Assembly and Mechanosensing

Author:

Ntadambanya Audrey1ORCID,Pernier Julien2ORCID,David Violaine1ORCID,Susumu Kimihiro3ORCID,Medintz Igor L.3ORCID,Collot Mayeul4ORCID,Klymchenko Andrey4ORCID,Hildebrandt Niko5ORCID,Le Potier Isabelle6,Le Clainche Christophe1ORCID,Cardoso Dos Santos Marcelina1ORCID

Affiliation:

1. Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France

2. Gustave Roussy Institute Inserm U1279 Université Paris-Saclay Villejuif France

3. Center for Bio/Molecular Science and Engineering U.S. Naval Research Laboratory Washington USA

4. Laboratoire de Bioimagerie et Pathologie CNRS UMR 7021 Université de Strasbourg Strasbourg France

5. Department of Engineering Physics McMaster University Hamilton ON L8S4L7 Canada

6. Centre de nanosciences et nanotechnologies (C2N) CNRS UMR9001 Université Paris-Saclay Palaiseau France

Abstract

AbstractUnderstanding the mechanisms of assembly and disassembly of macromolecular structures in cells relies on solving biomolecular interactions. However, those interactions often remain unclear because tools to track molecular dynamics are not sufficiently resolved in time or space. In this study, we present a straightforward method for resolving inter‐ and intra‐molecular interactions in cell adhesive machinery, using quantum dot (QD) based Förster resonance energy transfer (FRET) nanosensors. Using a mechanosensitive protein, talin, one of the major components of focal adhesions, we are investigating the mechanosensing ability of proteins to sense and respond to mechanical stimuli. First, we quantified the distances separating talin and a giant unilamellar vesicle membrane for three talin variants. These variants differ in molecular length. Second, we investigated the mechanosensing capabilities of talin, i.e., its conformational changes due to mechanical stretching initiated by cytoskeleton contraction. Our results suggest that in early focal adhesion, talin undergoes stretching, corresponding to a decrease in the talin‐membrane distance of 2.5 nm. We demonstrate that QD‐FRET nanosensors can be applied for the sensitive quantification of mechanosensing with a sub‐nanometer accuracy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3