Affiliation:
1. Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense Denmark
2. School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
3. Danish Institute for Advanced Study (DIAS) University of Southern Denmark Campusvej 55 5230 Odense Denmark
Abstract
AbstractChemical modifications of enzymes excel in the realm of enzyme engineering due to its directness, robustness, and efficiency; however, challenges persist in devising versatile and effective strategies. In this study, we introduce a supramolecular modification methodology that amalgamates a supramolecular polymer with Candida antarctica lipase B (CalB) to create supramolecular enzymes (SupEnzyme). This approach features the straightforward preparation of a supramolecular amphiphilic polymer (β‐CD@SMA), which was subsequently conjugated to the enzyme, resulting in a SupEnzyme capable of self‐assembly into supramolecular nanoparticles. The resulting SupEnzyme nanoparticles can form micron‐scale supramolecular aggregates through supramolecular and electrostatic interactions with guest entities, thus enhancing catalyst recycling. Remarkably, these aggregates maintain 80 % activity after seven cycles, outperforming Novozym 435. Additionally, they can effectively initiate photobiocatalytic cascade reactions using guest photocatalysts. As a consequence, our SupEnzyme methodology exhibits noteworthy adaptability in enzyme modification, presenting a versatile platform for various polymer, enzyme, and biocompatible catalyst pairings, with potential applications in the fields of chemistry and biology.
Funder
Danmarks Frie Forskningsfond
Novo Nordisk Fonden
Carlsbergfondet
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献