Ultrahigh‐Rate Na/Cl2 Batteries Through Improved Electron and Ion Transport by Heteroatom‐Doped Bicontinuous‐Structured Carbon

Author:

Xiang Luoxing1,Xu Qiuchen1,Zhang Han1,Geng Shitao1,Cui Rui1,Xiao Tianyu1,Chen Peining2,Wu Liang1,Yu Wei1,Peng Huisheng2ORCID,Mai Yiyong1ORCID,Sun Hao1ORCID

Affiliation:

1. Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University Shanghai 200240 China

2. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China

Abstract

AbstractRechargeable sodium/chlorine (Na/Cl2) batteries are emerging candidates for sustainable energy storage owing to their superior energy densities and the high abundance of Na and Cl elements. However, their practical applications have been plagued by the poor rate performance (e.g., a maximum discharge current density of 150 mA g−1), as the widely used carbon nanosphere cathodes show both sluggish electron‐ion transport and reaction kinetics. Here, by mimicking the sufficient mass and energy transport in a sponge, we report a bicontinuous‐structured carbon cubosome with heteroatomic doping, which allows efficient Na+ and electron transport and promotes Cl2 adsorption and conversion, thus unlocking ultrahigh‐rate Na/Cl2 batteries, e.g., a maximum discharge current density of 16,000 mA g−1 that is more than two orders of magnitude higher than previous reports. The optimized solid–liquid–gas (carbon–electrolyte–Cl2) triple interfaces further contribute to a maximum reversible capacity and cycle life of 2,000 mAh g−1 and 250 cycles, respectively. This study establishes a universal approach for improving the sluggish kinetics of conversion‐type battery reactions, and provides a new paradigm to resolve the long‐standing dilemma between high energy and power densities in energy storage devices.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Science and Technology Commission of Shanghai Municipality

Shanghai Municipal Education Commission

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3