Affiliation:
1. Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University Shanghai 200240 China
2. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
Abstract
AbstractRechargeable sodium/chlorine (Na/Cl2) batteries are emerging candidates for sustainable energy storage owing to their superior energy densities and the high abundance of Na and Cl elements. However, their practical applications have been plagued by the poor rate performance (e.g., a maximum discharge current density of 150 mA g−1), as the widely used carbon nanosphere cathodes show both sluggish electron‐ion transport and reaction kinetics. Here, by mimicking the sufficient mass and energy transport in a sponge, we report a bicontinuous‐structured carbon cubosome with heteroatomic doping, which allows efficient Na+ and electron transport and promotes Cl2 adsorption and conversion, thus unlocking ultrahigh‐rate Na/Cl2 batteries, e.g., a maximum discharge current density of 16,000 mA g−1 that is more than two orders of magnitude higher than previous reports. The optimized solid–liquid–gas (carbon–electrolyte–Cl2) triple interfaces further contribute to a maximum reversible capacity and cycle life of 2,000 mAh g−1 and 250 cycles, respectively. This study establishes a universal approach for improving the sluggish kinetics of conversion‐type battery reactions, and provides a new paradigm to resolve the long‐standing dilemma between high energy and power densities in energy storage devices.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Science and Technology Commission of Shanghai Municipality
Shanghai Municipal Education Commission
Subject
General Chemistry,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献