High‐throughput Synthesis of Solution‐Processable van der Waals Heterostructures through Electrochemistry

Author:

Shi Huanhuan1,Li Mengmeng23,Fu Shuai4,Neumann Christof5,Li Xiaodong16,Niu Wenhui16,Lee Yunji4,Bonn Mischa4,Wang Hai I.4,Turchanin Andrey5,Shaygan Nia Ali16,Yang Sheng7,Feng Xinliang16ORCID

Affiliation:

1. Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany

2. Key Laboratory of Microelectronic Devices and Integrated Technology Institute of Microelectronics Chinese Academy of Sciences 100029 Beijing China

3. University of Chinese Academy of Sciences 100049 Beijing China

4. Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

5. Institute of Physical Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Lessingstrasse 10 07743 Jena Germany

6. Max Planck Institute for microstructure physics Weinberg 2 06120 Halle Germany

7. Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 200240 Shanghai China

Abstract

AbstractTwo‐dimensional van der Waals heterostructures (2D vdWHs) have recently gained widespread attention because of their abundant and exotic properties, which open up many new possibilities for next‐generation nanoelectronics. However, practical applications remain challenging due to the lack of high‐throughput techniques for fabricating high‐quality vdWHs. Here, we demonstrate a general electrochemical strategy to prepare solution‐processable high‐quality vdWHs, in which electrostatic forces drive the stacking of electrochemically exfoliated individual assemblies with intact structures and clean interfaces into vdWHs with strong interlayer interactions. Thanks to the excellent combination of strong light absorption, interfacial charge transfer, and decent charge transport properties in individual layers, thin‐film photodetectors based on graphene/In2Se3 vdWHs exhibit great promise for near‐infrared (NIR) photodetection, owing to a high responsivity (267 mA W−1), fast rise (72 ms) and decay (426 ms) times under NIR illumination. This approach enables various hybrid systems, including graphene/In2Se3, graphene/MoS2 and graphene/MoSe2 vdWHs, providing a broad avenue for exploring emerging electronic, photonic, and exotic quantum phenomena.

Funder

Fundamental Research Funds for the Central Universities

HORIZON EUROPE European Research Council

National Natural Science Foundation of China

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3