Affiliation:
1. Department of Chemistry The Hong Kong University of Science and Technology Clearwater Bay, Kowloon Hong Kong 999077 China
Abstract
AbstractMacrocycles with bent π‐conjugation motif are extremely rare in nature and synthetically daunting and anticancer haouamines and spirohexenolides were representative of such rare natural products with synthetically challenging bent π‐conjugation within a macrocycle. While the total synthesis of haouamines has been elegantly achieved, spirohexenolides remains an unmet synthetic challenge due to the highly strained bent 1,3,5‐triene conjugation within C15 macrocycle. Inspired by the chemical synthesis of cycloparaphenylenes (CPPs) and haouamines, herein we devise a synthetic strategy to overcome the highly strained bent 1,3,5‐triene conjugation within the macrocycle and achieve the first, asymmetric total synthesis of spirohexenolides A (>20 mg) and B (>50 mg). Our synthesis features strategic design of ring‐closing metathesis (RCM) macrocyclization followed by double dehydration to achieve the C15 macrocycle with the deformed nonplanar 1,3,5‐triene conjugation. In addition, we have developed a new enantioselective construction of highly functionalized spirotetronate fragment (northeast moiety) through RCM and Ireland–Claisen rearrangement. Our in vitro bioassay studies reveal that both spirohexenolides are cytotoxic against a panel of human cancer cells with IC50 1.2–13.3 μM and spirohexenolide A is consistently more potent (up to 3 times) than spirohexenolide B, suggesting the importance of alcohol for their bioactivity and for medicinal chemistry development.
Funder
Research Grants Council, University Grants Committee
Hong Kong University of Science and Technology
Subject
General Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献