Multiplying Oxygen Permeability of a Ruddlesden‐Popper Oxide by Orientation Control via Magnets

Author:

Zhao Zhijun1ORCID,Chen Guoxing2ORCID,Escobar Cano Giamper1ORCID,Kißling Patrick A.1ORCID,Stölting Oliver3ORCID,Breidenstein Bernd4ORCID,Polarz Sebastian3ORCID,Bigall Nadja C.1ORCID,Weidenkaff Anke25ORCID,Feldhoff Armin1ORCID

Affiliation:

1. Institute of Physical Chemistry and Electrochemistry Leibniz University Hannover Callinstr. 3A 30167 Hannover Germany

2. Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS Brentanostr. 2a 63755 Alzenau Germany

3. Institute of Inorganic Chemistry Leibniz University Hannover Callinstr. 9 30167 Hannover Germany

4. Institute of Production Engineering and Machine Tools Leibniz University Hannover An der Universität 2 30823 Garbsen Germany

5. Department of Materials and Earth Sciences Technical University Darmstadt Peter-Grünberg-Str. 2 64287 Darmstadt Germany

Abstract

AbstractRuddlesden‐Popper‐type oxides exhibit remarkable chemical stability in comparison to perovskite oxides. However, they display lower oxygen permeability. We present an approach to overcome this trade‐off by leveraging the anisotropic properties of Nd2NiO4+δ. Its (a,b)‐plane, having oxygen diffusion coefficient and surface exchange coefficient several orders of magnitude higher than its c‐axis, can be aligned perpendicular to the gradient of oxygen partial pressure by a magnetic field (0.81 T). A stable and high oxygen flux of 1.40 mL min−1 cm−2 was achieved for at least 120 h at 1223 K by a textured asymmetric disk membrane with 1.0 mm thickness under the pure CO2 sweeping. Its excellent operational stability was also verified even at 1023 K in pure CO2. These findings highlight the significant enhancement in oxygen permeation membrane performance achievable by adjusting the grain orientation. Consequently, Nd2NiO4+δ emerges as a promising candidate for industrial applications in air separation, syngas production, and CO2 capture under harsh conditions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3