Coumarin‐Based Photodegradable Hydrogels Enable Two‐Photon Subtractive Biofabrication at 300 mm s−1

Author:

Qiu Wanwan1ORCID,Gehre Christian1ORCID,Nepomuceno Jaime Pietrantuono1,Bao Yinyin2ORCID,Li Zhiquan3ORCID,Müller Ralph1ORCID,Qin Xiao‐Hua1ORCID

Affiliation:

1. Institute for Biomechanics, ETH Zurich Gloriastrasse 39 8092 Zurich Switzerland

2. Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zurich Switzerland

3. School of Materials and Energy Guangdong University of Technology Guangzhou, Guangdong 510006 China

Abstract

AbstractSpatiotemporally controlled two‐photon photodegradation of hydrogels has gained increasing attention for high‐precision subtractive tissue engineering. However, conventional photolabile hydrogels often have poor efficiency upon two‐photon excitation in the near‐infrared (NIR) region and thus require high laser dosage that may compromise cell activity. As a result, high‐speed two‐photon hydrogel erosion in the presence of cells remains challenging. Here we introduce the design and synthesis of efficient coumarin‐based photodegradable hydrogels to overcome these limitations. A set of photolabile coumarin‐functionalized polyethylene glycol linkers are synthesized through a Passerini multicomponent reaction. After mixing these linkers with thiolated hyaluronic acid, semi‐synthetic photodegradable hydrogels are formed in situ via Michael addition crosslinking. The efficiency of photodegradation in these hydrogels is significantly higher than that in nitrobenzyl counterparts upon two‐photon irradiation at 780 nm. A complex microfluidic network mimicking the bone microarchitecture is successfully fabricated in preformed coumarin hydrogels at high speeds of up to 300 mm s−1 and low laser dosage down to 10 mW. Further, we demonstrate fast two‐photon printing of hollow microchannels inside a hydrogel to spatiotemporally direct cell migration in 3D. Collectively, these hydrogels may open new avenues for fast laser‐guided tissue fabrication at high spatial resolution.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3