Sequentially Regulating Potential‐Determining Step for Lowering CO2 Electroreduction Overpotential over Te‐Doped Bi Nanotips

Author:

Li Youzeng1,Li Jinhan1,Ai Wei2,Chen Jialei1,Lu Tiantian1,Liao Xuelong1,Wang Wei1,Huang Rong1,Chen Zhuo1,Wu Jinxiong2,Cheng Fangyi1,Wang Huan1ORCID

Affiliation:

1. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) College of Chemistry Nankai University 300071 Tianjin China

2. Tianjin Key Lab for Rare Earth Materials and Applications Center for Rare Earth and Inorganic Functional Materials Smart Sensor Interdisciplinary Science Center School of Materials Science and Engineering Nankai University 300350 Tianjin China

Abstract

AbstractElectrocatalytic conversion of CO2 into formate is recognized an economically‐viable route to upgrade CO2, but requires high overpotential to realize the high selectivity owing to high energy barrier for driving the involved proton‐coupled electron transfer (PCET) processes and serious ignorance of the second PCET. Herein, we surmount the challenge through sequential regulation of the potential‐determining step (PDS) over Te‐doped Bi (TeBi) nanotips. Computational studies unravel the incorporation of Te heteroatoms alters the PDS from the first PCET to the second one by substantially lowering the formation barrier for *OCHO intermediate, and the high‐curvature nanotips induce enhanced electric field that can steer the formation of asymmetric *HCOOH. In this scenario, the thermodynamic barrier for *OCHO and *HCOOH can be sequentially decreased, thus enabling a high formate selectivity at low overpotential. Experimentally, distinct TeBi nanostructures are obtained via controlling Te content in the precursor and TeBi nanotips achieve >90 % of Faradaic efficiency for formate production over a comparatively positive potential window (−0.57 V to −1.08 V). The strong Bi−Te covalent bonds also afford a robust stability. In an optimized membrane electrode assembly device, the formate production rate at 3.2 V reaches 10.1 mmol h−1 cm−2, demonstrating great potential for practical application.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3