Unlocking Giant Third‐Order Optical Nonlinearity in (MA)2CuX4 through Introducing Jahn‐Teller Distortion

Author:

Li Bingyue1,Li Hui1,Wu Chao1,Fu LuLu1,Boukhvalov Danil W.2,Humphrey Mark G.3,Zhang Chi1,Huang Zhipeng1ORCID

Affiliation:

1. China-Australia Joint Research Center for Functional Molecular Materials School of Chemical Science and Engineering Tongji University Shanghai 200092 P.R. China

2. College of Science Nanjing Forestry University Nanjing 210037 P.R. China Institute of Physics and Technology Ural Federal University Mira Str. 19 620002 Yekaterinburg Russia

3. Research School of Chemistry Australian National University Canberra ACT 2601 Australia

Abstract

AbstractNonlinear absorption coefficient and modulation depth stand as pivotal properties of nonlinear optical (NLO) materials, while the existing NLO materials exhibit limitations such as low nonlinear absorption coefficients and/or small modulation depths, thereby severely impeding their practical application. Here we unveil that introducing Jahn–Teller distortion in a Mott‐Hubbard system, (MA)2CuX4 (MA=methylammonium; X=Cl, Br) affords the simultaneous attainment of a giant nonlinear absorption coefficient and substantial modulation depth. The optimized compound, (MA)2CuCl4, demonstrates a nonlinear absorption coefficient of (1.5±0.08)×105 cm GW−1, a modulation depth of 60 %, and a relatively low optical limiting threshold of 1.22×10−5 J cm−2. These outstanding attributes surpass those of most reported NLO materials. Our investigation reveals that a more pronounced distortion of the [CuX6]4− octahedron emerges as a crucial factor in augmenting optical nonlinearity. Mechanism study involving structural and spectral characterization along with theoretical calculations indicates a correlation between the compelling performance and the Mott‐Hubbard band structure of the materials, coupled with the Jahn–Teller distortion‐induced dd transition. This study not only introduces a promising category of high‐performance NLO materials but also provides novel insights into enhancing the performance of such materials.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3