Discovering Dynamic Plant Enzyme Complexes in Yeast for Kratom Alkaloid Pathway Identification**

Author:

Wu Yinan1,Liu Chang1,Koganitsky Anna1,Gong Franklin L.1,Li Sijin1ORCID

Affiliation:

1. Robert F. Smith School of Chemical and Biomolecular Engineering Cornell University 14853 Ithaca NY USA

Abstract

AbstractDiscovering natural product biosynthetic pathways of medicinal plants is challenging and laborious. Capturing the coregulation patterns of pathway enzymes, particularly transcriptomic regulation, has proven an effective method to accelerate pathway identification. In this study, we developed a yeast‐based screening method to capture the protein‐protein interactions (PPI) between plant enzymes, which is another useful pattern to complement the prevalent approach. Combining this method with plant multiomics analysis, we discovered four enzyme complexes and their organized pathways from kratom, an alkaloid‐producing plant. The four pathway branches involved six enzymes, including a strictosidine synthase, a strictosidine β‐D‐glucosidase (MsSGD), and four medium‐chain dehydrogenase/reductases (MsMDRs). PPI screening selected six MsMDRs interacting with MsSGD from 20 candidates predicted by multiomics analysis. Four of the six MsMDRs were then characterized as functional, indicating the high selectivity of the PPI screening method. This study highlights the opportunity of leveraging post‐translational regulation features to discover novel plant natural product biosynthetic pathways.

Funder

National Institute on Deafness and Other Communication Disorders

National Institute of General Medical Sciences

Division of Biological Infrastructure

Division of Integrative Organismal Systems

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3