Affiliation:
1. State Key Laboratory of Fine Chemicals Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources School of Chemical Engineering Dalian University of Technology Dalian 116024 Liaoning China
Abstract
AbstractEthylene glycol is a useful organic compound and chemical intermediate for manufacturing various commodity chemicals of industrial importance. Nevertheless, the production of ethylene glycol in a green and safe manner is still a long‐standing challenge. Here, we established an integrated, efficient pathway for oxidizing ethylene into ethylene glycol. Mesoporous carbon catalyst produces H2O2, and titanium silicalite‐1 catalyst would subsequently oxidize ethylene into ethylene glycol with the in situ generated H2O2. This tandem route presents a remarkable activity, i.e., 86 % H2O2 conversion with 99 % ethylene glycol selectivity and 51.48 mmol gecat−1 h−1 production rate at 0.4 V vs. reversible hydrogen electrode. Apart from generated H2O2 as an oxidant, there exists ⋅OOH intermediate which could omit the step of absorbing and dissociating H2O2 over titanium silicalite‐1, showing faster reaction kinetics compared to the ex situ one. This work not only provides a new idea for yielding ethylene glycol but also demonstrates the superior of in situ generated H2O2 in tandem route.
Funder
National Natural Science Foundation of China
Subject
General Chemistry,Catalysis
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献