Supramolecular Modular Assembly of Imaging‐Trackable Enzymatic Nanomotors

Author:

Ye Zihan1,Che Yanan2,Dai Dihua3,Jin Dongdong1,Yang Yingwei3,Yan Xiaohui2,Ma Xing1ORCID

Affiliation:

1. Sauvage Laboratory for Smart Materials School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China

2. State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361005 China

3. College of Chemistry Jilin University Changchun 130012 China

Abstract

AbstractSelf‐propelled micro/nanomotors (MNMs) have shown great application potential in biomedicine, sensing, environmental remediation, etc. In the past decade, various strategies or technologies have been used to prepare and functionalize MNMs. However, the current preparation strategies of the MNMs were mainly following the pre‐designed methods based on specific tasks to introduce expected functional parts on the various micro/nanocarriers, which lacks a universal platform and common features, making it difficult to apply to different application scenarios. Here, we have developed a modular assembly strategy based on host–guest chemistry, which enables the on‐demand construction of imaging‐trackable nanomotors mounted with suitable driving and imaging modules using a universal assembly platform, according to different application scenarios. These assembled nanomotors exhibited enhanced diffusion behavior driven by enzymatic reactions. The loaded imaging functions were used to dynamically trace the swarm motion behavior of assembled nanomotors with corresponding fuel conditions both in vitro and in vivo. The modular assembly strategy endowed with host–guest interaction provides a universal approach to producing multifunctional MNMs in a facile and controllable manner, which paves the way for the future development of MNMs systems with programmable functions.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

National Key Research and Development Program of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3