Lattice Oxygen Activation through Deep Oxidation of Co4N by Jahn–Teller–Active Dopants for Improved Electrocatalytic Oxygen Evolution

Author:

Han Jingrui1,Wang Haibin1,Wang Yuting2,Zhang Hao3,Li Jun4,Xia Yujian3,Zhou Jieshu1,Wang Ziyun5,Luo Mingchuan6,Wang Yuhang3,Wang Ning7,Cortés Emiliano8,Wang Zumin1,Vomiero Alberto910,Huang Zhen‐Feng11,Ren Hangxing1213,Yuan Xianming12,Chen Songhua14,Feng Donghui12,Sun Xuhui3,Liu Yongchang115,Liang Hongyan114ORCID

Affiliation:

1. School of Materials Science and Engineering Tianjin University Tianjin 300350 P.R. China

2. School of Science Tianjin University Tianjin 300350 P.R. China

3. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Materials and Devices Soochow University Suzhou 215000 P.R. China

4. Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P.R. China

5. School of Chemical Sciences the University of Auckland Auckland 1010 New Zealand

6. School of Materials Science and Engineering Peking University Beijing 100871 P.R. China

7. Beijing Institute of Smart Energy Beijing 102209 P. R. China

8. Nanoinstitute Munich Faculty of Physics Ludwig Maximilians University of Munich 80539 Mu-nich Germany

9. Division of Materials Science Department of Engineering Sciences and Mathematics Luleå University of Technology 97187 Luleå Sweden

10. Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia Mestre Italy

11. School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P.R. China

12. PERIC Hydrogen Technologies Co. Ltd. Handan 056027 P.R. China

13. School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R.China

14. College of Chemistry and Material Science Longyan University Longyan 364012 P.R. China

15. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation Tianjin University Tianjin 300350 P.R. China

Abstract

AbstractTriggering the lattice oxygen oxidation mechanism is crucial for improving oxygen evolution reaction (OER) performance, because it could bypass the scaling relation limitation associated with the conventional adsorbate evolution mechanism through the direct formation of oxygen–oxygen bond. High‐valence transition metal sites are favorable for activating the lattice oxygen, but the deep oxidation of pre‐catalysts suffers from a high thermodynamic barrier. Here, taking advantage of the Jahn–Teller (J–T) distortion induced structural instability, we incorporate high‐spin Mn3+ ( ) dopant into Co4N. Mn dopants enable a surface structural transformation from Co4N to CoOOH, and finally to CoO2, as observed by various in situ spectroscopic investigations. Furthermore, the reconstructed surface on Mn‐doped Co4N triggers the lattice oxygen activation, as evidenced experimentally by pH‐dependent OER, tetramethylammonium cation adsorption and online electrochemical mass spectrometry measurements of 18O‐labelled catalysts. In general, this work not only offers the introducing J–T effect approach to regulate the structural transition, but also provides an understanding about the influence of the catalyst's electronic configuration on determining the reaction route, which may inspire the design of more efficient catalysts with activated lattice oxygen.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3