Affiliation:
1. School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Key Laboratory of Thin Film and Microfabrication (Ministry of Education) Shanghai Jiao Tong University Shanghai 200240 China
2. Department of Chemistry & Center for the Science of Materials Berlin Humboldt-Universität zu Berlin 12489 Berlin Germany
3. DWI – Leibniz Institute for Interactive Materials 52056 Aachen Germany
Abstract
AbstractNatural photoactive systems have evolved to harness broad‐spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo‐switches—the most extensively studied photoswitches, we demonstrate effective solar E→Z photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight‐driven azo‐switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine‐tuning of spectral window that extends light absorption beyond 600 nm. Notably, back‐photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light‐reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light‐driven systems and efficient solar energy technologies.
Funder
National Natural Science Foundation of China
Einstein Stiftung Berlin
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献