Solar Azo‐Switches for Effective EZ Photoisomerization by Sunlight

Author:

Zhang Zhao‐Yang1ORCID,Dong Dongfang1,Bösking Tom23,Dang Tongtong1,Liu Chunhao1,Sun Wenjin1,Xie Mingchen1,Hecht Stefan23ORCID,Li Tao1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Key Laboratory of Thin Film and Microfabrication (Ministry of Education) Shanghai Jiao Tong University Shanghai 200240 China

2. Department of Chemistry & Center for the Science of Materials Berlin Humboldt-Universität zu Berlin 12489 Berlin Germany

3. DWI – Leibniz Institute for Interactive Materials 52056 Aachen Germany

Abstract

AbstractNatural photoactive systems have evolved to harness broad‐spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo‐switches—the most extensively studied photoswitches, we demonstrate effective solar EZ photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight‐driven azo‐switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine‐tuning of spectral window that extends light absorption beyond 600 nm. Notably, back‐photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light‐reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light‐driven systems and efficient solar energy technologies.

Funder

National Natural Science Foundation of China

Einstein Stiftung Berlin

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3