Complete Biochemical Characterization of Pantaphos Biosynthesis Highlights an Unusual Role for a SAM‐Dependent Methyltransferase

Author:

Polidore Alexander L. A.1ORCID,Caserio Angelica D.1ORCID,Zhu Lingyang2ORCID,Metcalf William W.13ORCID

Affiliation:

1. Department of Microbiology University of Illinois at Urbana-Champaign 601 S. Goodwin Urbana IL 61874 USA

2. Department of Chemistry University of Illinois at Urbana-Champaign 505 S Mathews Ave Urbana IL 61874 USA

3. Institute for Genomic Biology University of Illinois at Urbana-Champaign 1206 West Gregory Drive Urbana IL 61874 USA

Abstract

AbstractPantaphos is small molecule virulence factor made by the plant pathogen Pantoea ananatis. An 11 gene operon, designated hvr for high virulence, is required for production of this phosphonic acid natural product, but the metabolic steps used in its production have yet to be established. Herein, we determine the complete biosynthetic pathway using a combination of bioinformatics, in vitro biochemistry and in vivo heterologous expression. Only 6 of the 11 hvr genes are needed to produce pantaphos, while a seventh is likely to be required for export. Surprisingly, the pathway involves a series of O‐methylated intermediates, which are then hydrolyzed to produce the final product. The methylated intermediates are produced by an irreversible S‐adenosylmethione (SAM)‐dependent methyltransferase that is required to drive a thermodynamically unfavorable dehydration in the preceding step, a function not previously attributed to members of this enzyme class. Methylation of pantaphos by the same enzyme is also likely to limit its toxicity in the producing organism. The pathway also involves a novel flavin‐dependent monooxygenase that differs from homologous proteins due to its endogenous flavin‐reductase activity. Heterologous production of pantaphos by Escherichia coli strains expressing the minimal gene set strongly supports the in vitro biochemical data.

Funder

National Institute of General Medical Sciences

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hot off the Press;Natural Product Reports;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3