Investigation of simplified physiologically‐based pharmacokinetic models in rat and human

Author:

Yau Estelle123ORCID,Olivares‐Morales Andrés2ORCID,Ogungbenro Kayode1,Aarons Leon1,Gertz Michael2

Affiliation:

1. Centre for Applied Pharmacokinetic Research (CAPKR) The University of Manchester Manchester UK

2. Roche Pharma Research and Early Development (pRED) Roche Innovation Center Basel Basel Switzerland

3. Sanofi R&D, DMPK France Paris France

Abstract

AbstractWhole‐body physiologically‐based pharmacokinetic (PBPK) models have many applications in drug research and development. It is often necessary to inform these models with animal or clinical data, updating model parameters, and making the model more predictive for future applications. This provides an opportunity and a challenge given the large number of parameters of such models. The aim of this work was to propose new mechanistic model structures with reduced complexity allowing for parameter optimization. These models were evaluated for their ability to estimate realistic values for unbound tissue to plasma partition coefficients (Kpu) and simulate observed pharmacokinetic (PK) data. Two approaches are presented: using either established kinetic lumping methods based on tissue time constants (drug‐dependent) or a novel clustering analysis to identify tissues sharing common Kpu values or Kpu scalars based on similarities of tissue composition (drug‐independent). PBPK models derived from these approaches were assessed using PK data of diazepam in rats and humans. Although the clustering analysis produced minor differences in tissue grouping depending on the method used, two larger groups of tissues emerged. One including the kidneys, liver, spleen, gut, heart, and lungs, and another including bone, brain, muscle, and pancreas whereas adipose and skin were generally considered distinct. Overall, a subdivision into four tissue groups appeared most physiologically relevant in terms of tissue composition. Several models were found to have similar abilities to describe diazepam i.v. data as empirical models. Comparability of estimated Kpus to experimental Kpu values for diazepam was one criterion for selecting the appropriate PK model structure.

Funder

F. Hoffmann-La Roche

Publisher

Wiley

Subject

Pharmacology (medical),Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3