Influence of input motion and surface layer properties on seismic site response: A stochastic simulation method–based MLR model

Author:

Yıldız Özgür1

Affiliation:

1. Civil Engineering Department Malatya Turgut Özal University Malatya Türkiye

Abstract

AbstractSeismic site response analyses are simulations in which the effects of geological conditions on seismic waves are examined. The uncertainties that make these analyses crucial are defined as the source of motion, the travel path of seismic waves, and geological conditions. In this study, a series of non‐linear seismic response analyses were performed using data from site investigation studies. The results of non‐linear analyses performed under earthquakes with different characteristics based on real soil data were investigated in terms of acceleration time histories and response spectra. The relationship between site response with the surface layer properties and input motion properties used in the simulations was examined in a parametrical manner. Based on the results obtained, Monte Carlo simulation, which is a stochastic data simulation method, was performed. Additionally, multiple regression and variance analysis (ANOVA) was performed on the dataset created by both site response analysis and stochastic simulations. The MLR model displayed highly accurate results with a coefficient of determination,R2of 0.9763, and a standard error of 0.109. The efficiency level of the independent variables used as input parameters in the simulations on the dependent variable, AF was examined. It was revealed that the coefficient of lateral earth pressure at rest (Ko), earthquake motion (i.e., PGA of input motion) and surface layer thickness (dsurface) from the soil properties had the highest effect on the amplification factor.

Publisher

Wiley

Subject

Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3