Low dielectric constant composites using covalent organic framework dispersed terpolyimide

Author:

Purushothaman Revathi1ORCID,Pandian C. K. Arvinda2ORCID

Affiliation:

1. Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Chennai Tamilnadu India

2. Department of Automobile Engineering B. S. Abdur Rahman Crescent Institute of Science and Technology Chennai Tamilnadu India

Abstract

AbstractPolyimides are used in various applications, including fuel cells, membranes, and microelectronics, due to their outstanding tensile properties, great thermal stability, low dielectric constant, and chemical inertness. Applications requiring even lower dielectric constants include interlayer dielectrics and tape‐automated bonding. In this study, a covalent organic framework (COF‐1) was synthesized and dispersed in various percentages into a solution of terpoly(amide acid) (TPAA) to produce COF‐1/terpolyimide composites. 3,3′,4,4′‐Oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐biphenyltetracarboxylicdianhydride (BPDA), and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) were reacted with 4,4′‐(hexafluoroisopropylidene)bis[(4‐aminophenoxy)benzene] (HFBAPP) or 4,4′‐(hexafluoroisopropylidene) dianiline (6FpDA) to form terpoly(amide acid). In this case, monomers with fluorinated substituents (HFBAPP, 6FpDA, and 6FDA) were utilized to improve free volume. Pores of COF‐1 and gaps between polyimide chains and COF‐1 can be filled with air with a dielectric constant (κ) ~1, lowering the κ value of terpolyimide composites. The κ value of COF‐1/terpolyimide composites decreased as COF‐1 content increased, reaching a minimum of 1.96. Tensile properties decreased slightly with increasing COF‐1 levels. The terpolyimides and their composites were thermally stable up to approximately 520°C. As a result, these polymer composites look promising for use as insulators in microelectronic applications.Highlights Terpolyimide is prepared using fluorinated monomers to improve bulk volume. Incorporated COF‐1 into terpoly(amide acid) to introduce pores/voids and reduce dielectric constant. Developed COF‐1/terpolyimide composites with a low dielectric constant of 1.96. Optimized COF‐1/terpolyimide composites for microelectronic applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3