Industrial scale fouling of heat exchangers in isocyanate production

Author:

Bevas Clayton1ORCID,Abel Marie‐Laure1,Jacobs Ivo2,Muller Peter2,van Oudgaarden Karin2,Watts John F.1ORCID

Affiliation:

1. School of Mechanical Engineering Sciences University of Surrey Guildford UK

2. Global Excellence Team Huntsman Polyurethanes Rotterdam Netherlands

Abstract

The fouling of a commercial stainless steel (AISI 316L) during the manufacture of polymeric methylene diphenyl diisocyanate (pMDI) has been studied using laboratory‐based fouling apparatus that simulates commercial production conditions. The goal of the work is to understand the mechanisms behind the corrosion and fouling during isocyanate production with a view to improving process efficiency, not only in this process, but also others using similar plant and processes. Steel coupons were exposed to a solution of pMDI and solid amine hydrochloride, with hydrogen chloride gas being bubbled through the reaction cell. A number of different conditions were investigated, the variables being pMDI concentration, HCl gas flow duration, immersion time and temperature. Following the fouling experiments the coupons were removed from the fouling rig, photographed, and examined by XPS and ToF‐SIMS; principal component analysis was used to extend the ToF‐SIMS analysis to identify organic fouling products. The extent of fouling is shown to be relatively insensitive to pMDI concentration, but significantly influenced by continual HCl flow and increased temperature, features which increase the extent of substrate corrosion thought to be a precursor to the fouling process itself. Both XPS and ToF‐SIMS confirm the formation of various nickel chlorides in the corrosion process. Urea and metal corrosion products are found to co‐exist on certain (random) areas of the coupon surface.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Reference18 articles.

1. BowmanE JacobsonG KochG et al. International measures of prevention application and economics of corrosion technologies study. NACE Int 2016.

2. An XPS study of the steel-aromatic moisture-cured urethane interface

3. The adhesion of isocyanate-based polymers to steel

4. A study of the interfacial chemistry between polymeric methylene diphenyl di‐isocyanate and a Fe–Cr alloy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3