Attenuation of an ultrashort pulse in a folded meander microstrip line with two passive conductors

Author:

Malygin Konstantin P.1ORCID,Nosov Alexander V.1,Kim Georgiy Y.1

Affiliation:

1. Tomsk State University of Control Systems and Radioelectronics Tomsk Russia

Abstract

SummaryIn this article, we investigated a new structure of a protective meander line (ML): a meander microstrip line (MSL) with two passive conductors. The existing theory of ultra‐short pulse (USP) attenuation in MLs is presented for the first time. Based on this theory, we determined the number of decomposed pulses at the output of the MSL line with two passive conductors, and, for the first time, formulated the conditions for pulse decomposition in the line. The folding of the MSL line into non‐core turns was studied in detail. As a result of this article, we proposed a new theory that involves the utilization of additional groups of decomposed pulses for enhanced USP attenuation. These additional groups were thoroughly examined, and the delays of pulses from these groups were defined. This analysis allowed identifying the reason for their appearance. It was revealed that folding the ML into non‐core turns allows further attenuation of the USP amplitude, which increases with the increase of the number of non‐core turns. To validate the obtained simulation results, we performed experimental measurements and obtained good consistency of the results. The N‐norms analysis demonstrated that the combined use of such folding and passive conductors reduces the probability of electrical breakdown, arc discharge, and dielectric breakdown. The maximum USP attenuation at the output was 24.9 dB. As a result of useful signal integrity analysis, it is proposed to use a folded MSL together with a USB 2.0 “Full‐speed” interface with a data transfer rate of 12 Mbit/s. In addition, it is proposed to use such MSLs in DC power circuits.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3