Direct numerical simulation of the distribution of floating microplastic particles in an open channel flow

Author:

Sakai Yoshiyuki1ORCID,Manhart Michael1

Affiliation:

1. Professorship of Hydromechanics, TUM School of Engineering and Design Technical University of Munich Munich Germany

Abstract

AbstractMicroplastic fragments in the aquatic environment constitute a major threat for the health and fitness of organisms. However, our quantitative understanding in the microplastic load in typical natural river systems is severely limited due to the large uncertainties associated with the sources and the pathways of the microplastic contamination. To address this knowledge gap, we performed direct numerical simulations of the dynamics and distribution of microplastic particles in turbulent open channel flow at moderate Reynolds numbers. The particle dynamics is characterised by four nondimensional parameters, namely: Reynolds number of the open channel flow (), nondimensional particle diameter () and Galileo () and Stokes () numbers of the particles of which the latter two include the particle‐fluid density ratio (). To limit our scope to the most relevant configuration, we focused on the distribution of weakly buoyant microplastic particles at , whereas the remaining parameters were adjusted to cover the orders of magnitude that can be found in a typical laboratory facility, as well as a natural river. Our simulation results show that the steady‐state microplastic distribution in the turbulent flow is influenced by the Stokes and the Galileo numbers significantly, which ranges from the complete accumulation on the free surface to the homogeneous distribution, and somewhere in between. Moreover, the Galileo number, alongside the flow Reynolds number, were also shown to influence the temporal scaling of the transient behaviour of the gradual accumulation of the microplastics towards the free surface. Both of our findings highlight the complex nature of the particle–turbulence interactions, and motivate further investigations in this approach.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3