Invertebrate trophic structure on marine ferromanganese and phosphorite hardgrounds

Author:

Pereira Olívia S.1ORCID,Vlach Devin1,Bradley Angelica1,Gonzalez Jennifer1,Mizell Kira2,Levin Lisa A.1

Affiliation:

1. Scripps Institution of Oceanography University of California San Diego La Jolla California USA

2. US Geological Survey Santa Cruz California USA

Abstract

AbstractThe Southern California Borderland hosts a variety of geologic and oceanographic features that allow for diverse habitats to occur in a restricted region with a strong oxygen minimum zone (OMZ) and hard substrates. These include ferromanganese (FeMn) crusts and phosphorites targeted for deep‐seabed mining in other regions. Baseline studies regarding hardground macro‐ (> 0.3 mm) and megafaunal (> 2 cm) invertebrates are lacking, although they contribute to understanding nutrient cycling and resilience of deep‐sea communities to ocean deoxygenation, fishing, or mineral extraction. With the goal of understanding how substrate type, depth, and dissolved oxygen concentration influence invertebrate trophic structure, we surveyed δ13C and δ15N values of invertebrates on hard substrates on the Southern California Borderland margin along a depth gradient (120–2400 m) through the OMZ at inshore (< 100 km from shore) and offshore (100–250 km from shore) sites, using generalized additive models and community‐level metrics. Macrofaunal isotopic values correlate with substrate type, exhibiting higher trophic diversity on FeMn crusts and specialized communities on phosphorites. Megafaunal isotopic values correlate with proximity to shore; animals offshore seem to depend more on phytoplanktonic production than animals inshore. In general, δ15N increased with decreasing dissolved oxygen and increasing depth, possibly due to remineralization processes within the OMZ and with depth. We discuss how feeding modes and community composition might influence the observed patterns. This study elucidates the importance of the environmental context in shaping invertebrate trophic structure on continental margins and provides baseline knowledge that may be useful in regions where these minerals are targeted for extraction.

Funder

National Oceanic and Atmospheric Administration

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3