Enhanced shape memory performance and numerical simulation of knitted‐fabric reinforced polymer composites with weft yarns

Author:

Huang Ying1,Zhao Wei2,Ren Haipeng3,Jiang Liquan1,Ouyang Yiwei1,Xu Weilin1,Liu Yang1ORCID

Affiliation:

1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China

2. Department of Astronautical Science and Mechanics Harbin Institute of Technology Harbin China

3. School of Fashion and Textiles The Hong Kong Polytechnic University Hong Kong China

Abstract

AbstractFabric‐reinforced shape memory polymeric composites (SMPC) have shown great potential in the design of intelligent deformation structures. In this work, the weft‐knitted fabric inserted with weft yarns was developed as reinforcement to fabricate the shape memory epoxy polymer (SMEP) composites. The effects of weft yarn, loop density and direction on the shape memory performance of SMPC under different bending radii were experimentally investigated. The results show that the SMPC have good shape fixity ratios and shape recovery ratios of around 98%. As compared with those of SMPCs without inserting weft yarns, the SMPCs with weft yarns have shorter shape recovery time, and the recovery force of SMPCs with weft yarns in the 0° and 90° directions shows an increase of 86.4% and 79.5%, respectively. The recovery force of SMPC improve 3.7 times compared to SMEP. The multiscale models of SMPC were established with basis of the results of micro‐computed tomography scanning of specimens and viscoelastic theory. The surface buckling behaviors of SMEP and SMPC specimens after U‐bending load were discussed. Finally, the deformation of loops and weft yarns of SMPC were analyzed to reveal the shape memory mechanism.Highlights Shape memory polymeric composites (SMPC) with weft yarns has shorter shape recovery time. Recovery force of SMPC with weft yarns was obvious enhanced. Multi‐scale viscoelastic models of SMPC were established. Surface buckling behaviors of SMPC after U‐bending load were revealed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3