Input significance ranking of microalgae continuous culture models

Author:

Sangregorio‐Soto Viyils1ORCID,Garzón‐Castro Claudia L1ORCID,Mazzanti Gianfranco2ORCID

Affiliation:

1. Engineering Faculty, CAPSAB Research Group Universidad de La Sabana Campus del Puente del Común, Km 7 Autopista Norte de Bogotá Chía Cundinamarca Colombia

2. Dalhousie University 5273 DaCosta Row Halifax Nova Scotia B3H 4R2 Canada

Abstract

AbstractBackgroundMicroalgal cultures are evolving into a promising ecofriendly technology for a host of applications. To be sustainable, culture conditions need to be optimized and then controlled. One way to develop robust controllers for a cultivation system is by using mathematical growth models to simulate microalga‐based production. In this scenario, engineering design tasks begin by selecting the critical variables of these models.ResultsA new methodology for determining the significance ranking of a model's input factors under steady‐state operation (parameters (e.g. biological, geometrical) and/or process variables) was designed. The sensitivity of biomass response to its inputs was investigated in four different photobioreactor growth models within a nominal operational region. The methodology ranks models’ input factors based on the one‐at‐a‐time Morris method of elementary effects and variance‐based Sobol's method. Such information provided by the presented procedure is valuable as it reveals which input parameters explain most of the variance in model predictions.ConclusionThe methodology allowed the identification of controlled variables and biological parameters to be targeted for enhanced calibration. Furthermore, the presented methodology showed that in continuous reactors the dilution rate is a critical variable of the process. Therefore, it should be controlled. Additionally, most surprisingly, it is observed that controlling the light intensity within the optimum point of operation is not necessarily a crucial task. However, although its manipulation is still important, the accurate calibration of the parameters of the model may represent a greater influence on the biomass response. © 2023 Society of Chemical Industry (SCI).

Funder

Universidad de La Sabana

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3