Enhanced removing of cyanobacterium by NZVI coupled with H2O2: Influencing factors and removal mechanisms

Author:

Ji Lipeng1,Lu Hao1,Wang Yue1,Chu Fuhao1,Wang Danni1,Li Jiake2,Mo Shuhong2,Kong Yun12ORCID

Affiliation:

1. College of Resources and Environment Yangtze University Wuhan Hubei China

2. State Key Laboratory of Eco‐hydraulics in Northwest Arid Region Xi'an University of Technology Xi'an Shaanxi China

Abstract

AbstractAs advanced oxidation processes (AOPs) is considered to be a highly effective approach for degrading organic pollutants, the simultaneous coagulation and oxidation process by the Fenton‐like reaction of nanoscale zero‐valent iron (NZVI) and hydrogen peroxide (H2O2) is investigated to eliminate the harmful cyanobacterium Microcystis aeruginosa in this study, and the process conditions are optimized using the central composite design of response surface methodology (RSM); in addition, the removal efficiency of M. aeruginosa (in terms of chlorophyll a, Chl a) and the verifications of the antioxidant abilities, as well as extracellular organic matters (EOM) and intracellular organic matters (IOM) are investigated under the optimized conditions. Results indicate that H2O2 concentration is the key factor affecting the Chl a removal efficiency, and the maximum Chl a removal reaches 98.10% under the optimized conditions: NZVI concentration 62.82 mg L−1, H2O2 concentration 54.2 mmol L−1, pH 4.38 and rotating speed 67 rpm. The high correlation coefficient (R2 > 0.80) of analysis of variance (ANOVA) demonstrates the RSM model is extremely significant and suitable for experimental results. Moreover, the total organic carbon (TOC) and fluorescent substances (soluble cyanobacteria metabolic byproducts, aromatic proteins II, humic and fulvic acid‐like compounds) for both EOM and IOM are enhanced removal. It is speculated the removal mechanisms of the Fenton‐like process of NZVI/H2O2 for cyanobacterium belongs to the combined actions of the oxidation of Fe(II)/H2O2 and the coagulation of Fe(III), which destroy the defense system and result in the removal of M. aeruginosa.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3