Adsorptive removal of dibenzothiophene from model fuel over activated carbon developed by KOH activation of pinecone: Equilibrium and kinetic studies

Author:

Khalid Rand Y.1,Fadhil Abdelrahman B.1ORCID

Affiliation:

1. Laboratory Researches of Industrial Chemistry, Department of Chemistry, College of Science University of Mosul Mosul Iraq

Abstract

AbstractActivated carbon (AC) was developed from pinecone using KOH as an activator to eliminate dibenzothiophene (DBT) from a synthetic model of gasoline fuel. The best sample was the AC prepared, employing a 1.5:1 KOH: feed impregnation ratio at 750°C for 1 h. Thus, it was tested in the adsorptive elimination of DBT from the fuel after being identified by X‐ray diffraction (XRD), field‐emission scanning electron microscopy (FESEM), energy dispersive X‐ray (EDX), N2 adsorption–desorption isotherms, pore volume distribution, Fourier transform infrared spectroscopy (FTIR), total basic and acid groups, and pHPZC. The as‐obtained AC exhibited a Brunauer–Emmett–Teller (BET) surface area of 478.89 m2/g with an average pore size of 2.0 nm, indicating its micropores structure. A removal performance of 97.90% was obtained using 0.30 g of AC at 20°C for 30 min, while the adsorptive capacity amounted to 34.38 mg/g as per the Langmuir isotherm. The as‐synthesized AC exhibited a good adsorptive performance for eliminating S compounds from commercial gasoline (42.11%) under the optimal experimental conditions, which increased to 88.16% with increasing the mass of AC implemented in the adsorption process. The adsorption of DBT through the fixed‐bed approach was also adopted, and the results at various flow rates of the effluent through fixed bed of the AC were close to that obtained via the batch‐adsorption system. The regenerated AC exhibited excellent adsorptive performance for DBT until 5 cycles of reuse, reflecting the effectiveness of the obtained AC. Finally, the Langmuir adsorption isotherm and pseudo‐second‐order kinetics model best described the DBT adsorption by the AC developed from pinecone.

Publisher

Wiley

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3