Water resource management using remote sensing and coyote optimization algorithms

Author:

Hai Qing1,Zhang Lijun2,Li Gendong2,Khayatnezhad Majid3,Abdolhosseinzadeh Sama4

Affiliation:

1. Department of Water Resources and Civil Engineering Hetao College Bayan Nur Inner Mongolia China

2. Development Center Inner Mongolia Hetao Irrigation District Water Conservancy Bayan Nur Inner Mongolia China

3. Young Researchers and Elite Club, Ardabil Branch Islamic Azad University Ardabil Iran

4. University of Mohaghegh Ardabili Ardabil Iran

Abstract

AbstractThis paper proposes a new methodology for investigating water management options in agricultural irrigation that accounts for the heterogeneity of irrigation system characteristics and limitations in existing water resources. The process uses a random data matching method to obtain operational management methods and system features using remote sensing data and water resource management optimization to evaluate different management methods. Regional modelling was performed, using the SWAP model under deterministic–stochastic conditions. Inputs such as sowing dates, irrigation procedures, soil characteristics, groundwater depth and water quality were treated as distributed data. To estimate these data, residual minimization was used between the field‐scale evapotranspiration distributions modelled in the SWAP model and two Landsat 8 ETM+ images, as well as the Surface Energy Balance Algorithm for Land (SEBAL). The investigation of water management methods using distributed data as input was performed, and optimization of water management and data assimilation was achieved by applying the improved coyote algorithm. The case study was conducted in Mashhad during the dry season of 2018–2019. The results suggest that simultaneous consideration of crop and water management methods, rather than an independent evaluation, can lead to further improvement in regional wheat yield under water shortage conditions.

Publisher

Wiley

Subject

Soil Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Green Optimization Product Design of Suspended Fillers Based on Water Environmental Materials;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-07-02

2. Vertical Distribution Characteristics of Microcystin in Water during the Accumulation and Deposition of Cyanobacteria;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3