Crystallization, mechanical, and heat resistance performances of copolymer polypropylene modified by α nucleating agent

Author:

Ding Shubing1,Jin Congcong1,Li Zhuo1,Dun Dongxing2,Xue Yu2,Leng Shengmin1,Zhang Yan'e2,Zhou Hongfu2ORCID

Affiliation:

1. Shandong Advanced Chemical Research Institute Co., Ltd. Heze China

2. Key Laboratory of Processing and Application of Polymeric Foams of China National Light Industry Council, School of Light Industry Science and Engineering Beijing Technology and Business University Beijing China

Abstract

AbstractPolypropylene (PP) was a very practical and important thermoplastic, which was widely used in various fields due to its low cost, universal, and corrosion resistance. However, the moderate mechanical and heat resistance properties of PP limited its application in some special fields. In this paper, nucleating agents NP‐657 were added to further improve its mechanical and heat resistance performances of PP (300H). Furthermore, the heterogeneous nucleation of NP‐657 reduced the crystal size and increased the crystal density of 300H. With the rise of NP‐657 content, the crystallization rate of different PP systems increased significantly, such as the t1/2 of 300H‐0.2 reduced by 31.9 min in comparison with that of 300H at 140°C. At the same time, the crystallinity of 300H‐0.05 with 0.05 wt.% NP‐657 increased by about 5.96% compared with 300H. In addition, 300H‐0.05 has the highest tensile strength (23.9 ± 0.6 MPa), flexural modulus (1273.3 ± 67.3 MPa), and the highest thermal deformation temperature (88.5 ± 7.7°C) in different PP systems. In general, this paper provided a reference for the fabrication of PP with satisfactory mechanical and heat resistance performances.Highlights 300H‐0.05 had a maximum crystallinity of 40.8 ± 0.2% in different PP systems. The flexural modulus of 300H‐0.05 was 434 MPa higher than that of 300H. The tensile strength of 300H‐0.05 increased to 23.9 ± 0.6 MPa. 300H had the highest thermal deformation temperature of 88.5 ± 7.7°C.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3