Accelerated CEST imaging through deep learning quantification from reduced frequency offsets

Author:

Cheema Karandeep12ORCID,Han Pei12ORCID,Lee Hsu‐Lei1,Xie Yibin12,Christodoulou Anthony G.12ORCID,Li Debiao12

Affiliation:

1. Biomedical Imaging Research Institute Cedars‐Sinai Medical Center Los Angeles California USA

2. Department of Bioengineering University of California, Los Angeles Los Angeles California USA

Abstract

AbstractPurposeTo shorten CEST acquisition time by leveraging Z‐spectrum undersampling combined with deep learning for CEST map construction from undersampled Z‐spectra.MethodsFisher information gain analysis identified optimal frequency offsets (termed “Fisher offsets”) for the multi‐pool fitting model, maximizing information gain for the amplitude and the FWHM parameters. These offsets guided initial subsampling levels. A U‐NET, trained on undersampled brain CEST images from 18 volunteers, produced CEST maps at 3 T with varied undersampling levels. Feasibility was first tested using retrospective undersampling at three levels, followed by prospective in vivo undersampling (15 of 53 offsets), reducing scan time significantly. Additionally, glioblastoma grade IV pathology was simulated to evaluate network performance in patient‐like cases.ResultsTraditional multi‐pool models failed to quantify CEST maps from undersampled images (structural similarity index [SSIM] <0.2, peak SNR <20, Pearson r <0.1). Conversely, U‐NET fitting successfully addressed undersampled data challenges. The study suggests CEST scan time reduction is feasible by undersampling 15, 25, or 35 of 53 Z‐spectrum offsets. Prospective undersampling cut scan time by 3.5 times, with a maximum mean squared error of 4.4e–4, r = 0.82, and SSIM = 0.84, compared to the ground truth. The network also reliably predicted CEST values for simulated glioblastoma pathology.ConclusionThe U‐NET architecture effectively quantifies CEST maps from undersampled Z‐spectra at various undersampling levels.

Funder

Common Fund for Commodities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3