Learning Lyapunov terminal costs from data for complexity reduction in nonlinear model predictive control

Author:

Abdufattokhov Shokhjakhon1,Zanon Mario1ORCID,Bemporad Alberto1ORCID

Affiliation:

1. IMT School for Advanced Studies in Lucca Lucca Italy

Abstract

AbstractA classic way to design a nonlinear model predictive control (NMPC) scheme with guaranteed stability is to incorporate a terminal cost and a terminal constraint into the problem formulation. While a long prediction horizon is often desirable to obtain a large domain of attraction and good closed‐loop performance, the related computational burden can hinder its real‐time deployment. In this article, we propose an NMPC scheme with prediction horizon and no terminal constraint to drastically decrease the numerical complexity without significantly impacting closed‐loop stability and performance. This is attained by constructing a suitable terminal cost from data that estimates the cost‐to‐go of a given NMPC scheme with long prediction horizon. We demonstrate the advantages of the proposed control scheme in two benchmark control problems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3