Adjustment of rotation and saturation effects (AROSE) for CEST imaging

Author:

Jin Tao1ORCID,Chung Julius Juhyun1ORCID

Affiliation:

1. Department of Radiology University of Pittsburgh Pittsburgh Pennsylvania USA

Abstract

AbstractPurposeEndogenous CEST signal usually has low specificity due to contaminations from the magnetization transfer contrast (MTC) and other labile protons with overlapping or close Larmor frequencies. We propose to improve CEST signal specificity with adjustment of rotation and saturation effects (AROSE).MethodsThe AROSE approach measures the difference between CEST signals acquired with the same average irradiation power but largely different duty cycles, for example, a continuous wave or a high duty cycle pulse train versus a low duty cycle pulse train with a flip angle φ. Simulation, phantom, and in vivo rodent studies were performed to evaluate the characteristics of the AROSEφ signal.ResultsSimulation and experimental results show that AROSE is a low‐pass filter that can suppress fast exchanging processes (e.g., >3000 s−1), whereas AROSEπ is a band‐pass filter suppressing both fast and slow exchange (e.g., <30 s−1) rates. For other φ angles, the sensitivity and the exchange‐rate filtering effect of AROSEφ falls between AROSEπ and AROSE. AROSE can also minimize MTC and improve the Larmor frequency selectivity of the CEST signal. The linewidth of the AROSE1.5π spectrum is about 60% to 65% when compared to the CEST spectrum measured by continuous wave. Depending on the needs of an application, the sensitivity, exchange‐rate filtering, and Larmor frequency selectivity can be adjusted by varying the flip angle, duty cycle, and average irradiation power.ConclusionCompared to conventional CEST signals, AROSE can minimize MTC and improve exchange rate filtering and Larmor frequency specificity.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3