iPSC Transplantation Increases Regeneration and Functional Recovery After Ischemic Stroke in Neonatal Rats

Author:

Chau Monica J.1,Deveau Todd C.1,Song Mingke1,Gu Xiaohuan1,Chen Dongdong1,Wei Ling12

Affiliation:

1. Department of Anesthesiology Emory University School of Medicine, Atlanta, Georgia, USA

2. Department of Neurology Emory University School of Medicine, Atlanta, Georgia, USA

Abstract

Abstract Limited treatments are available for perinatal/neonatal stroke. Induced pluripotent stem cells (iPSCs) hold therapeutic promise for stroke treatment, but the benefits of iPSC transplantation in neonates are relatively unknown. We hypothesized that transplanted iPSC-derived neural progenitor cells (iPSC-NPCs) would increase regeneration after stroke. Mouse pluripotent iPSCs were differentiated into neural progenitors using a retinoic acid protocol. Differentiated neural cells were characterized by using multiple criteria and assessments. Ischemic stroke was induced in postnatal day 7 (P7) rats by occluding the right middle cerebral artery and right common carotid artery. iPSC-NPCs (400,000 in 4 µl) were transplanted into the penumbra via intracranial injection 7 days after stroke. Trophic factor expression in the peri-infarct tissue was measured using Western blot analysis. Animals received daily bromodeoxyuridine (BrdU) injections and were sacrificed 21 days after stroke for immunohistochemistry. The vibrissae-elicited forelimb placement test was used to evaluate functional recovery. Differentiated iPSCs expressed mature neuronal markers, functional sodium and potassium channels, and fired action potentials. Several angiogenic and neurogenic trophic factors were identified in iPSC-NPCs. Animals that received iPSC-NPC transplantation had greater expression of stromal cell-derived factor 1-α (SDF-1α) and vascular endothelial growth factor (VEGF) in the peri-infarct region. iPSC-NPCs stained positive for neuronal nuclei (NeuN) or glial fibrillary acidic protein (GFAP) 14 days after transplantation. iPSC-NPC-transplanted animals showed greater numbers of BrdU/NeuN and BrdU/Collagen IV colabeled cells in the peri-infarct area compared with stroke controls and performed better in a sensorimotor functional test after stroke. iPSC-NPC therapy may play multiple therapeutic roles after stroke by providing trophic factors, increasing angiogenesis and neurogenesis, and providing new cells for tissue repair. Stem Cells  2014;32:3075–3087

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3