A dual‐reference study design for understanding and improving AAV genome size analysis

Author:

Sun Yali1ORCID,Lu Zhi‐xiang1ORCID,Miller Michael1ORCID,Valcour Ying1,Khimani Anis H1,Bauer Jana1,Salomon Michael1,Tong Yanhong1ORCID

Affiliation:

1. Revvity, Inc Waltham Massachusetts USA

Abstract

AbstractRecombinant adeno‐associated virus (rAAV) is the leading platform of gene delivery for its long‐lasting gene transformation and low immunogenicity. Characterization of the integrity and purity of the rAAV genome is critical to ensure clinical potency and safety. However, current rAAV genome characterization methods that can provide size assessment are either time‐consuming or not easily accessible to general labs. Additionally, there is a lack of right reference standard for analyzing long single‐stranded DNA (ssDNA) fragments. Here, we have developed an ssDNA assay on a microfluidic capillary electrophoresis platform using ssDNA reference standard. This assay provides size calling for ssDNA fragment, a detection sensitivity at ∼89 pg/µL (3 × 1010 GC/mL AAV) for 5.1 kb ssDNA fragment, and a turnaround time at ∼100 s per sample with a high throughput sample analyzing capability. Moreover, we have observed that the annealing of AAV ssDNA subsequent to its release from the capsid might introduce an additional double‐stranded DNA (dsDNA) peak. This phenomenon is dependent on the sample processing workflow. To avoid the risk of mischaracterization, we recommend the use of dual‐reference standards in combination with other orthogonal methods to have a comprehensive understanding of the rAAV genome size and integrity.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3