An ADO‐OFDM with integrated precoding, companding and optimized power allocation methods for high‐speed data transmission in visible light communication

Author:

S. Swaminathan1,N. R. Raajan2

Affiliation:

1. Department of Electronics and Communication Engineering, SRC SASTRA Deemed University Kumbakonam India

2. Department of Electronics and Communication Engineering SASTRA Deemed University Thanjavur India

Abstract

AbstractVisible light communications (VLC) has received a lot of attention in recent studies because of its benefits over radio‐frequency (RF) communications. It is a short‐range optical wireless communication system that uses light‐emitting diodes (LEDs) as transmitters. Optical orthogonal frequency division multiplexing (OFDM) is an auspicious technology for VLC high‐speed data transfer. The use of OFDM in a VLC system raises the system's peak‐to‐average power ratio (PAPR). The intrinsic non‐linearity of LED is a key concern in an asymmetrically clipped DC‐biased optical OFDM (ADO‐OFDM) system due to its high PAPR. Also, conventional ADO‐OFDM modulation scheme cannot be used for accommodating different demands of services in downlink multiple access due to the restriction of direct current biased optical OFDM (DCO‐OFDM) and asymmetrically clipped optical (ACO‐OFDM) transmission on odd and even subcarriers. To tackle this issue, a modified ADO‐OFDM (MADO‐OFDM) is proposed that adjusts the numbers of subcarriers required for the transmission of ACO‐OFDM and DCO‐OFDM adaptively based on the requests of services in downlink multiple access. Also, the proposed MADO‐OFDM is integrated with a discrete Hartley Matrix transform (DisHMT) precoder and Generalized Piecewise Linear Compander (GPLD) to provide high‐speed data transmission with less PAPR. In addition, the power is allocated to the proposed MADO‐OFDM system optimally by maximizing the channel capacity based on the Aquila optimizer algorithm. The simulation results reveal that the suggested system's PAPR is reduced by 2.4 dB and 0.8 dB, respectively, compared to conventional ADO and hybrid ADO‐OFDM. It also confirms that the suggested generalized PLC can greatly increase BER without affecting the PAPR performance.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3